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PRATT _ WHITNEY' AIRCRAFT

PREFACE

This program started 29 June 1965 under contract NAS3-7609 and will extend

with Tasks I & II for a period of twenty four (24) months. Semiannual progress
reports will be submitted on the 20th of the month at the end of each six month

period. This is the second of these reports and covers activities for the period
ending June 30, 1966.

Richard M. SlaytonisProjectManager_rPra_& Whitn_ Aircra_ _rthis
program.

The following National Aeronautics and Space Administration personnel have

been assigned to this project.

Contracting Officer

Project Manager

Research Advisor

Contract Administrator
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PRATT &.'WHITNEY AIRCRAFT

SUMMARY

This report covers the work accomplished during the second 6-month period

(January 1966 through June 1966) of the NAS3-7C_09 contract which was initiated

29 June 1965 and extends far a total of 24 months.

Briefly, the objective of the work to be accomplished is to analyze, design,

procure, and test four types of mainshaft seals for advanced gas turbine applica-
tions.

A program summary is presented in Figure 1. • The work accomplished during
this 6-month period is outlined below•

1. Contacts with vendors were continued in relation to the seals to be

evaluated.

2. Detailed analytical studies of all seal configurations to "be tested were
•continued.

0 The remaining three design concepts and detailed drawings were sub-

mitted to NASA for approval. These design concepts consisted of the

following seal configurations:

a. Orifice compensating hydrostatic face seal with piston ring secondary.

b. Face contact seal with bellows secondary.

c. Externally pressurized hydrostatic seal.

4. Approval was received from NASA for the following seal concepts:

a. Orifice compensating hydrostatic face seal.

b. Face contact seal with bellows secondary.

5. Procurement of mainshaft seal rig (A) parts was completed. Also,

procurement of parts for a second mainshaft seal rig (B) was completed.

6. Procurement of the inert gas rig and the instrumentation validation rig

was started and completed.

o Procurement of all approved seals has commenced. The first two

orifice compensating seal assemblies were received from Stein Seal

Company.

Q Mainshaft seal rig (A) was assembled and the face contact seal with

piston ring secondary (Build 1) was run 16 hours while undergoing

preliminary dynamic checkout.

°o°
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e

10.

11.

Build 2 of the face contact seal with piston ring secondary completed

35 hours running time including some test points at 250°F oil in and

800°F air temperature at sliding speeds of up to 400 feet per second.

The engine simulation tests of this seal are currently continuing.

The instrumentation validation rig assembly was completed during

June 1966 and is ready for mounting on the test stand.

Mainshaft seal rig (B) with the orifice compensating hydrostatic face seal,
was assembled in June 1966.

TASK I i

MAINSHAFT SEAL DESIGN I i I
DESIGN ANALYSIS
DESIGN I
ANALYTICAL EVALUATION I

TEST SEAL PROCUREMENT [
TASK 1I i

TEST RIG ANALYSIS I I I

TEST RIG DESIGN _/1111111 rl/J I

TEST RIG PROCUREMENT I I

RIG ASSEMBLY I

TEST STUD PREP_'_TION _ _ I

RIG INSTRUMENTATION I!_ _ I

PRELIMINARY DYNAMIC _ I

$ 20 HOUR ENDURANCE I_ _-

Sr:JLL NO. 2 I I_-

SEAL NO. 3 _---

SEAL NO.4 _','

CYCLIC ENDURANCE TEST I
SEAL NO. I I

SEAl_ NO. 2 I

SEAL NO. 3 I
MAX CAPABILITIES TEST

3 SEALS I
INERT GAS SYSTEM TEST

3SEALs I
ENGINE TEST • I

DATA ANALYSIS I_:'=__,
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MONTHLY

SEMI-ANNUAL _ L
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Figure 1 Mainshaft Seal Program Summary
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1.0 INTRODUCTION

The objective of this program is the analysis, design and testing of four types

of mainshaft seals for advanced airbreathing propulsion systems. Testing will

be conducted under simulated engine operating conditions to:

1. determine design components and features of an improved mainshaft

se_l,

2. establish seal operational limits in terms of temperature, speed, and

pressure differential, and

3. establish a measure of seal reliability (wear and stability).
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2.0 DISCUSSION

2. I TASK I MAINSHAFT SEAL DESIGN

2.1.1 Summary

The work to be accomplished under this task is to analyze and design four seal

assemblies that have the potential capabilities of operating at the following
conditions-"

Seal Sliding Speed .......................

Seal Pressure Differential .................

Gas Temperature .......................

Oil Sump Temperature ....................

0 to 500 ft/sec

0 to 300 psi
Ambient to 1300°F

Ambient to 500°F

These four seal assemblies are further defined in the work statement of the con-

tract to be of four types:

1. Orifice compensating hydrostatic face seal. (Seal Designation A - Stein)

2. Externally pressurized hydrostatic face seal. (Seal Designation B - Stein)

3. Face contact seal with bellows secondary seal. (Seal Designation C - Stein)

4. Face contact seal with piston ring secondary seal (PWA)

During the 6-month period from January 1, 1966 to June 30, 1966 covered by this

report, analysis were performed on each of these four seal types. The following

paragraphs present a detailed discussion of the results of these analytical studies.

2.1.2 Mainshaft Seal Analysis

Four seal assemblies were designed to meet the contractual specifications. A

table outlining some significant features of these four designs is given in Table 1.

In each of the succeeding subsections, a diagram of each seal assembly along

with a general description is presented. The Pratt & Whitney Aircraft seal

assembly was discussed in the first semiannual report, PWA-2683, so it will

not be presented here.
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TABLE 1

MAINSHAFT SEAL CHARACTERISTICS

Seal

Designation

A (Stein)

B (Stein)

C (Stein)
P&WA

Design

A

B

C

PWA

Capable of

Single Double Being

Film Orifice Piston Ring Piston Ring Bellows Externally

Compensated Secondary Secondary Secondary Pressurized

X X X

X X X

X

X

Orifice compensated hydrostatic face seal

Externally pressurized orifice compensated hydrostatic face seal

Face contact with bellows secondary

Face contact with piston ring secondary

X

X

2.1.2.1 Orifice Compensated Hydrostatic Face Seal with Piston Ring Secondary -
(Seal A Stein}

This is a film riding seal (Figure 2) which allows the high pressure air at the inside

diameter to be introduced to an annular groove in the carbon face (1). The air is

introduced through three supply lines, each of which contains an assembly of four

orifices in series (2). The orifices are installed for the purpose of metering the
flow and lowering the pressure before allowing the air to enter the annular face

groove. The air introduced to the groove creates a "back pressure" which tends

to impede the leakage air from the I. D. (3) (which is at a higher pressure) from

flowing across the face of the seal. The leakage air, plus the air introduced to

the groove, then flows across the outer lip to the O.D. of the seal (4), thus creat-
ing the "film" for the seal to ride on.

When the seal face and seal plate are in firm contact, the pressure in the face

pocket will equal the load pressure because of the negligible pressure drop across

the orifice when there is no flow. As the seal opens, the flow through the orifice

creates a large pressure drop so that the pressure force in the face pocket

diminishes with increase in clearance between face and face plate. As the face

pocket pressure diminishes, the restoring force increases.
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SHAFT

WINDBACK SEAL

CARBON SEAL

/
HIGH PRESSURE AIR

COLLAR OR SEAL PLATE

ORIFICES IN SUPPLY LINE (_

RING

COMPRESSION SPRINGS (_

STEEL RETAINER SUPPORT STRUCTURE

LOW PRESSURE AIR

Figure 2 Orifice Compensated Hydrostatic Seal With Piston Ring Secondary

2.1.2.2 Externally Pressurized Orifice Compensated Hydrostatic Face Seal -

(Seal B Stein}

This is a film riding seal (Figure 3) which allows either the high pressure air at

the inside diameter or (through the use of fittings} some external high pressure

gas supply (such as nitrogen) to be introduced to an annular groove in the carbon

face. This high pressure gas is used to create a "back pressure" to impede air-

flow from the high pressure I. D. (1). The gas introduced to the groove plus the

leakage flow then flows across the outer lip to the O.D. of the seal(2), thus creat-

ing the "film" for the seal to ride on. The four orifices per assembly(3) in each

of the three supply lines are arranged in series and are installed for the purpose

of metering the flow and lowering the pressure before allowing the gas to enter

the annular groove at the interface. When the seal is tight against the seal plate,

the pressure in the interfacial groove is approximately equal to the pressure in

the rear chamber since leakage is low and the loss in the orifice is negligible.

As the face opening increases, the leakage will increase and the orifice drop

will become appreciable, thus causing a net restoring force.
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COLLAR OR SEALPLATE SHAFT

/
HIGH PRESSURE AIR

PISTON RINGS

ORIFICE STACK UP

IN SUPPLY LINE (_

WlNDBACK SEAL STEEL RETAIklER [_

ICARBON SEAL

LOW PRESSURE AiR

LOW PRESSURE AIR

AND OIL

INTERFACE SUPPLY HOLE

FITTINGS AVAILABLE\

FOR EXTERNAL ]

PRESSURIZATION /

COMPRESSION SPRINGS

HIGH PRESSURE AIR

CARRIER

Figure 3 Externally Pressurized Orifice Compensated Hydrostatic Face Seal

2.1.2.3 Carbon Face Contact Seal With Bellows Secondary Seal - (Seal C Stein)

This face seal (Figure 4) is comprised of a carbon primary seal and a bellows

secondary seal. The high pressure air is at the I.D. of the seal (1). Air at a

high pressure leaks through labyrinth seal(5) and exists at pressure (P) at

location(4). Gas (such as nitrogen) is introduced inside the bellows at location

(6) at some pressure (P + 5 psi). This gas then exits from the bellows at

location (3) where it still exists at pressure (approximately P + 5 psi). The

nitrogen then has two flow paths. Some of the nitrogen leaks across the carbon

face seal toward the O.D. (2) and the remainder since it is at pressure (P + 5

psi), leaks through a second labyrinth seal toward location (4) where air exists

at pressure P. The air-nitrogen mixture is then vented to the atmosphere.

The pressure of the nitrogen is not necessarily required to be P + 5, but this

value was chosen to emphasize the point that it is desirable to have the nitrogen

leak from point (3) to point (4) to ensure that air does not leak from point (4)

to point (3). In order to accomplish this, the nitrogen must be at some higher

pressure level than the air at point (4).
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I

I

I

I

I

i

[

COLLAR OR SEAL PLATE

/ , , _ _ BELLOWS

II\I -
__--I '_ v v _,.
=_-r:-= 1 i_-(__\ _ _,

_l I I PLO FRO_NTFACE BACK'XFACE

WIND BACK TOR¢_UE PiN

Figure 4 Carbon Face Contact Seal With Bellows Secondary

2.1.3 Mainshaft Seal Calculations

For each of the four seal designs, comparable design systems were formulated

consisting of the calculation of: (1) seal-carrier and plate deflections, (2} inertial

and frictional forces, (3) restoring and closing forces, (4) face leakages, and

(5) thermal maps of the seal assembly. Table 2 references these calculations

to the respective sections in this report and/or Semiannual Report No. 1 (PWA-2683).

A discussion in the first semiannual report stated that the forces acting to close

a seal, the net closing force to make the stationary seal contact the rotating

face plate, should be a constant value independent of changes in the pressure

drop across the seal. The basic equation defining this closing force is:

)e IIspr mesa!IPressureIite aciclosing = closingl± l friction _: force I + closing i- pressureforce force _ ! force force } lifting force

The spring force is designed to overcome the frictional force and the inertial

force. Consequently, the net closing force is equal to the difference between the

pressure closing and lifting forces. Using this as a design basis, the following

calculations are presented.
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TABLE 2

Seal Deflection Inertial & Restoring &

Designation Analysis , Frict. Forces Closin_ Forces

A (Stein) Prel.:Pg. 13-23 Pg. 7-10 Pg. 24

Detail: To be Pg. 10-12 Pg. 28
Initiated

Face

Leakage

Pg. 28

Thermal

Analysis

Analysis has been
Initiated

B (Stein) Prel. : Pg. 13-23 Pg. 7-10 Pg. 24
Detaih To be Pg. 10-13 Pg. 24-27

IniUated

Pg. 27 Analysis has been
Initiated

C (Stein) Prel. : Pg. 43-44 Pg. 41-42 Pg. 42
Detail: To be

Initiated

To be Initiated

P&WA Pg. 45-53 1st Semi- 1st Semi-Annual*

Design Annual* Pg. 10
Pg. 8-9

Pg. 53-59

*PWA-2683

A. Orifice compensated hydrostatic face seal.

B. Externally pressurized orifice compensated hydrostatic face seal.
C. Face contact with bellows secondary.
PWA Face contact with piston ring secondary

2.1.3.1 Orifice Compensated Hydrostatic Face Seal with Piston Ring Secondary(A)

and Externally Pressurized Orifice Compensated Face Seal Inertial

Loadings (S)

The orifice compensated hydrostatic face seal (A) and the comparable externally

pressurized hydrostatic seal (B) which is capable of being externally pressuri-

zed are very similar in design so the calculations relating to both will be treated

as one unit. The development presented in this subsection is primarily for seal

(A). Where results differ, the comparable result for seal (B) will be found to

the right of the result for (A). The difference is due to a slight increase in size

of seal (B).

2.1.3.1.1 Inertial Loadings - In calculating inertial loadings, the weight of the

steel band and carbon seal are first calculated. In turn, the equivalent face

force F I is determined at various conditions of Ap.

PAGE NO. 7
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1 Loadings ' (_)!
A. Inertia - I

I i° I

I 4.057 I

1. Steel band (P.R. Seal Ring)

O.6

wt. of A = P_(Ro2 - Ri 2)
=.28 7r(4.0572 - 3. 8322 ) (.6)

i wt. of B= 28 _r(4.4452 - 3. 8322 ) (.4)@

total steel band weight

0.4-----_

= .95

= 1.76

-- 2.71 lb.

2. Carbon seal

3.832
J

1

3.832

' II
3.502

I

_,i_" 0.46---..---_

I
i ®
I
I

I

!

[

wt. of A =

wt. of B =

• 065 r (3.8322 - 3. 5022 ) (.6) = .296

• 065 7r (3.8322 - 3.12 ) (.46) = .47__._6

total carbon seal weight = . 772 lb.

t
PAGE NO. 8
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STEEL

CARBON ill
3.832

[
Total weight of steel and carbon:

steel weight = = 2.71 lb.

carbon weight = .77 lb.

3.48 lb.

3.48 lb.

2 _r (3. 502)
wt./in, of circum. = • 158 lb./in.

At the condition of AP = 300 psi, the velocity is 500 ft/sec. Consequently,

__ _._ lrev. _)Speed = (500 ) (60 (2 f 3.502,_f ) (12 = 16,371.1 rpm.

=16,371x2 _/60 = 1712

_2 = 2.93 x 106 rad sec -2

-1
rad sec

Assume:

lm

2.

runout = 6. x 10-4in. T.I.R. x

simple harmonic motion: x = sin _ t --_ _" = - _ t
where x = axial displacement

Xmax = 1/2 runout

Then,

G

2

Xmax _ 2.93x106 13x 10-4/

gc 3.86 x 102

= 2.28 (dimensionless)

PAGE NO. 9
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Table of Resultin_ Inertial Loads:

Cond. - AP, psi Vel., ft/sec. Vel. ratio (Vel. raUol 2

100 200 2/5 4/25

calc. 332

200 400 4/5 16/25

300 500 1 1

where vel. ratio = vel./500

F I, equiv.

face force,

G lb/in.

.3646 .0576

1. .158

1. 458 .230

2.28 .36

where F I =
.158xG

2.1.3.1.2 Frictional Force on Piston Rings

Dimensions Used : Free Body Diagram :

7.003
7.005

DIA

I_ 0.018

r 0.020

0.079
0.080

TO08
0.012 l

0.158
0.162

ct

EFERENCEP°
LINE

L_

I
I

I
!

I
t
I
I

REFERENCE
LINE

AP

__L

Major Definitions:

F = Force per circumferential inch on piston ring in radial direction

rp due toAP. = AP[1-k](.019)

F
rs

= Force per circumferential inch on piston ring in radial direction

due to its tendency to restore itself to its original shape

PAGENO. 10
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Frt

F
pr

Note:

Total force per circumferential inch on piston ring in radial direction.

(Frt = F +rp Frs)

Force on piston ring in axial direction due to friction.

F = . 15 lbf/in, of circum.
rs

width = 0.019"

C = .2 = coefficient of friction

Pf = 14.7 psia = outlet pressure

k o = pressure profile modification constant

that is considered to act over dam area

uniform mechanical loading dam

= fraction of Ap

= f (r, geometry)

Table of Piston Rin_ Loads:

Pi' psia _ r = P /P. K 1 - K
Frp, =o 1 _ lb/in Frt F + F

r_ rs

114.7 100 0. 1282 • 629 • 371 0. 705 0.85

214.7 200 0. 0684 .646 .354 1. 344 1. 494

314.7 300 0. 0467 • 652 • 348 1.98 2.13

Fpr = FrtX Cf

0.1710

0.2988

0.426

Piston Ring Design

1. Large Piston Ring

1 16)3I = 1-_ ('0s)(" = 2.73x10 -5in 4

4
9.43 F R

rs m
Gap Closure =

EI

Gap Closure = 9.43 I" 157(3" 42214

30 x 106 x 2.73 x 10 -5

0.08 _--

t
3.342

!

1
T 3.502

3.422

where:

F
rs

lbf
.15

in. of circum.

R
m

E

= mean radius

= rood. of elast.

PAGENO. 11



PRATT &" WHITNEY AIRCRAFT

I = moment of inertia

Gap Closure = distance ring must be

closed to produce

radial restoring

force, F .
rs

Gap Closure = .2368 in (A) .2401 in (B)

(T

pr

pr

= d (E)(gap closure 1

9.43 Rm 2

= (.16_ 30x 106 (.23681

9.43 (3.422)2

= 10,200 psi. (A) 10,359psi (B)
pr

whe re:

pr
stress in piston ring due to

closing it a distance of (gap

closure) inches.

d = radial wall thickness of ring.

2. Small Piston Ring (design B only)

'('0.08

l 5.076
2.996

PAGE No. 12
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1 1 16)3I = _-_bh3 - 12 (.08) (. = 2.73x 10 -5 m"4
4

9.43 (Frs) R m
Gap Closure = EI

Gap Closure =

pr

9.43 {. 151{3. 076)4 = . 1546 in

(30 x 106)(2.73 x 10 -5)

d (E) (Gap closure)
2

9.43 R
m

(.16){30x 106){.1546) = 8304. psi

9.43 (3.076) 2

Required Total Loadings (Summary)

Cond. - Ap, psi

100

200

300

Vel., _/sec. F I F F T=F I+F FT/0.85__ pr pr

200 .158 .171 .329 .388

400 .230 .2988 .5288 .621

500 .36 .426 .786 .925

The inertial forces are dependent only upon the rubbing velocity, not on

pressure. Since one is interested in G >- 1.0, at the condition of

AP = 100 psi (vel = 200 ft/sec) F I will be set equal to F I =. 158 (where

G = 1.0). The same reasoning applies for the bellows secondary face seals.

The factor of 0.85 shown above is a sgfety factor to overcome the locking-pin

friction. The value is based on past experience.

2.1.3.1.3 Geometry Assurance Check (Deflection analysis)

It is required that the center of gravity (Cg) of steel and carbon have the

same axial (x) location. Also that Cp >_ sC so that Ofs - col"

PAGE NO. 13
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I

I , _ 0.6 _ _ 0.4

(Area) x _/2 +_)

I Member A: (.060)(.095) = .0057 x (.03) = .00017
B: (. 060)(. 045) = . 0027 x (.03) = .00008

C: (. 060)(.323) = .0193 x (. 03) = .00057

i D: (.40) (. 732) = .2928 x (.26) = .07612E: (. 60) (. 33) = . 1980 x (. 76) = .1504__._._8

total area = . 5185 .22742

.: cg) = _ = .4386 (A) .521 (B)carbon

2. Let Cg) steel = Cg) carbon

I ........I o.

Member A: (1.0) (.225) = .225 x (.56) = .126

B: (.40) 6 = .4._._6 x (.26) = .1046

.45+ .225 .1045

0"095

0.045

3
4_t

_.-0.06

+ . 126

PAGENO. 14
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If Cg) steel = Cg) carbon, then

ii •1045 +.126 _ 6

- .438

.1046 +.126 = .4386 (.4_ +.225)

6 = .386 (A) .523 (B)

3. Solving for @:

For simplificationuse only steel since its "E" is so much higher than carbon's.

I I

• : 0.6 =I: 0.4 : - _--0.06

, IL t
- " ction:

Member A: (.6) (.225) = .135 x (.76) = •1026

B: (•4) (.613) = .245 x (.26) = .0637

.380 •1663

•1663 _A
Cg)x = .38 = .4_

Y-direction:

Member A: (.6) (•225) = .135 x (.113) = .0153

B: (.4) (.613) = .245 x (.306) = .0750

•380 .0903

.0903 .238
Cg)y = -.-_ =

R m = 3.832 + .238 = 4.070"

I PAGENO. 15
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Assumed:

1. Plane areas in calculating I

m

bh 3
I =-

12

Member

Mass conversion has been

eliminated for simplification.

IA I
I

0.32: >_-_---0.438--'_

I .
I

I 1 I

'+1I i

,LI
0.178-_,- 0.26-,"0.76

+ A_ 2

A: 1/12 (.225)(.6)3 + .245(.178) 2 = .01181

B: 1/12 (.613)(.4) 3 + .135(.322) 2 = .01725
4

I = .02906 in

i
4.07

I

F = Ap A _ where ._ - distance from face of collar to land face of piston ring
r

= 300 (0.9) = 270 lb/in, of circ.

M = F (029- .438) = 270 (.012) = 3.24 lb-in/in, of circ.
r

MR 2 13: 24)_4.07_ 20 =- = = 61.9x10-6

El 30 x 106 x. 029

For shrinkage, allow

6min = 18x 10 -3

5max = 20 x 10 -3

2
Acarbon = .5186 in

2

Astee 1 = .3802 in

(radial)

(radial)

PAGENO. 16
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I _ = _ EA)stee.._._.__l: EA)carbon
_max 1_2 x EA)steel +EC)carbo n

= 20x10-..._ 3 x 30x 106x.3802 • 3x10_x.5186 = 18591b/in.

(3. 832) 2 30x 106x.3802 +3x106x.5186

T = Fma x x R

= 1859 x 3.832 = 7123.68 lbs.

a " Tsteel = --v-- = 7123.68 = 18736 66 psi.
A _

i acarbon = 13736.36 psi

7123. 68

• 5186

2.1.3.1.4 Collars (Seal Plate Deflection Analysis)

Forces stated in this development are those present during 300 psi condition

when the seal is operated with a self-energized face.

Collar, Solid; usage - film riding seals

-_ 0358 _*-----0.75------*- 0.35

F0 . _ 'l'

"i t FG , 2 /

I _ : ""_
3.416 / _ ........

,I I I ,.oo==.to
I III I 1
I

I PAGENO. 17
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i
Area, A

Member 1: (.3450 (1.458) = .503

I 2: (.75) (.768) = .576

1.079

_ 3.314

Cg = _= 3.07

Location of Cg from side -Area, A

Member 1:(.345 (1.458) = .503

• 576
2: (.75) (.768) -

1. 079

° 784
Cg = i. 079 = .726

Mean Radius, R

x 2.7725 =

x 3.329 =

Length

x .729 =

x .725 =

Moment = A x R

i. 394

1.92

3. 314

Moment = A x L

• 366

.418

• 784

1

12
(. 345) (1.458) 3 + (. 345) (1.458) (. 726 -. 729) 2

1
(. 768) (. 75) 3 + (. 75) (. 768) (. 726 725) 2+

12 -" = .1162

where F x = (300) w

F R = F o+ F G+ F i+ Fp

PAGE NO. 18

Assume these

values do not Force,

F - lb/in x R = Monent

Fp= 1315 lb. / 2 _ (3.07) = 68.2 x 3. 052 = - 208.

F i = 1115 lb. / 2 _ (3.07) = 57.9 x 3.269 = - 189.2

F G=490 lb. / 2 r (3.07) = 25.4 x 3.416 = - 86.6

F o= 544 lb. / 2 r (3.07) = 28.2 x 3.563 = - 100.6

FR= 3464 lb. / 2 T (3.07) = 179.9 x 2.945 = + 530•

- 54.4
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i
Moment due to pressure:

P=300 PSlG

Force per unit length of circ. at R = 3.07

300 (.358) (2.7725) = 97 lb/in.
3. 07

This force acts at 0.726 - . 358 = 0. 368" from the Cg

I

/

I

Moment due to pressure,

Mp = 97 x .368
m

• the net moment

= 35.7 lb-in/in.

= Mp +_M

= 35.7- 54.4 =-18.7

- 18.7 (3.07) 2
0= 30x106x.1162 = -50.5x10 -6

Weight of collar,

_r

W- 4 (.278) [(5.8902- 5.22) (1.458) + (7.4262 5.8902 ) (.75)]

= 5.72 lb. where sp. wt. of steel = 0.278 lb/in 3

Weight per inch of circum, at r = 3.07,

= 5.72/7r6.14 = .296 lb/in.

Centrifugal force = 28. 416 x 10 -6 WR m n 2

= 28. 416x10 -6 (.296) (3.07) (267 x106 ) = 6891.2

PAGE NO. 19
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Deflection due to centrifugal force,

_ a 2 (6891.2) (3.07) - 2
6_f = 2 2 L(1- v ) 3.07 + (1+ v )b 2]

v (b -a ) (1.458) (2.6) (3.07)

where a 2 = (2.6) 2 -- 6.76

b2 = (3.7113) 2 = 13.786

v = .29 = Poisson's ratio

E 5cf = 42,834.3

Deflection due to pressure,

-b 2 (97.) (2. 7725) - 07) 2 + (1.29) (6.76)] = - 616.61

• E 5cp = (b2- a2)(1,458) (2.945) (3.07) [(1- .29) (3.

.. E _cg = E 8cf + Ebp

= 42,217.69

Deflection at the end Y -

E 5y = E 5cg + Cg x EO

= 42,217.7 +(.726) (30x106 ) (- 50.5x10 -6 )

= 41,117.8

6y = 41,117.8/30x106 = 1370.59x 10-6

-6
1370 59 x 10 -3

= --_.7-'_ m = .494 x 10 in/in.

a = E_ = 30x106x.494x 10 -3= 14, 830.5psi
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Y "1------0.75
Fo

I t _,
o,6t_ _, __ ,

I I°, 4T']

o!o,I

1
QT_

L
I

I

I

I

i
I

I

I
I

I

I

I
I

Consider part A to be a cantilever beam fixed at the dashed line as shown, with

unit width

1
I - (.768) (.75) 3 = .0269

12

Fp= 300 psi (.228) xl" = 68.41b/in.

Fi= (243+ 300-243)2 ,.200) = 54.31b/in.

FG= 243 (. 094) x 1 = 22.84 lb/in.
243

F°- 2 (.200) = 24.3 lb/in

Deflection due to force Fp at Y

1 Fg_ -E5 = -
P 6 I

[3 (.107)2 (.768) - (.107)3]

= - 11.66

Deflection due to force F i at Y

1 F-EL [3 (.324)2 (.768)- (.324)3]E$i = - 6 I

= - 69.87

Deflection due to F G at Y

1 F_ZE_E_ = -
G 6 I

= - 57.53

Deflection due to F o at Y

1 F o
E _o = - 6 I

= - 96.92

[3 (.471)2 (.768) - (.471)3]

[3 (.618)2 (.768) - (.618)3]
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Total deflection,

I E6= E 5p

5 = _ :,)3

[ e: _c:ic

2.1.3.1.5 ',

3_i-_
I °"32I

I -'-"

+ E 5 i + E5 G + E$ o

235.98

- 235.98/30x 106 = - 7. 866x10 -6

(All deflection equations taken from Timoshenko)

Shroud, Windback (Stress Calculations) -

\

0.40 _1
r I0.70

4

Let the section be subdivided into parts.

Part 1:

T

Volume of ring - 4 (5.62- 5.1522) (.15) =.565in 3

Weight of ring = .278 x.565 = .157 lb.

Centrifugal force, F 1 = 28. 416 x 10 -6 W1 Rm 1 n 2

= 28. 416 x 10 -6 . 157 x 2. 688 n 2

I

PAGENO. 22
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Part 2:

W2 - 4 (6. 6582 - 5.62 ) (. 10) (.278)
2

F 2 = 28. 416x 10 -6w 2 Rm2 n

= 28. 416 x 10 -6 x .2827 x 3.0645 n 2

= . 2827 lb.

= 24.61x i0 -6 n 2

Part 3:

W3 - 4T (7. 7162 - 6.6582 ) (. 10) (.278)

F3 = 28. 416 x 10 -6 W 3 Rm3 n 2

= 28. 416 x 10 -6 x. 3319 x 3.5935 n 2 =

=. 3319 lb.

33.89x 10 -6n 2

Part 4:

T (7 982 7.7162 ) (.70) (.278) =W4 - 4 " -

F 4 = 28.416x10 -6x.6335x3.924n 2 =

• 6335 lb.

70.63x10 -6 n 2

Cond. -AP, psi n n 2x 10 -6 F 1 F 2 F 3 F 4 ZF

300 16,350 267.3 3223.6 6516.7 9061.5 18895 37,696.8

250 14,700 216. 2605. 5266. 7322.4 15269 30,462.4

200 13,100 171.6 2069.5 4183.6 5817. 12130 24,200.

100 6,550 42.9 517.4 1046. 1454.3 3032.6 6050.3

W = W 1 + W 2 + W 3 + W 4 = 1.405 lb.

Max. total force = 37,700 lbs.

37,700
5. 376r

- 2235 lb/in

O" __
F 2235

A .1
- 22,350 psi.
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2.1.3.1.6 Compression Springs

Operation of the seal takes place primarily at 200 psi. At this condition

FT/0.85 = . 621 lb/in.,it is assumed that nearly half this force will be taken up
by the spring. Consequently, 0.3 lb/in axial spring force will be required.

The total spring force = (0• 3 lb/in) (2 r 3.502} = 6.6 lb.

Force/spring = 6.6 lb/18 springs = 0• 367 lb/spring

5 = 0. 367/0• 8 = 0.459 in.

Operating Length = 1• 336 - . 459 =. 877 in.

Spring Design -
Material- Inconel X

Operating temp. - 900°F (heat treat accordingly}

Ends to be ground fiat & square
Wire diameter - 0.03 in.

Mcan coil diameter- 0.450 in.

Total coils - 18

Active coils- 16

Scale - 0.8 lb/ln.

Free length - 1.336 in.

Normal operating length -. 877 in.

Load at operating length - . 367 lb/spring

Stress at operating length - 15,500 psi.

Note: 18 springs required per seal

Force variation (=. 015)

Compressed: (.459+.015) (.8)=.3785x 18 =6•813 /2 7r3.502 =

Normal : .459 (.8} = .3665 x 18 = 6. 597/2r3.502 =

Extended : (.459- .015) (.8}= •3555x 18 = 6.391/ 2r 3.502=

.309 lb/in

• 300 lb/in

• 291 lb/in

2.1.3.1.7 Leakage and Restoring Force -

The following is the procedure followed to give curves of face leakage and restor-

ing force vs. face opening for various specified conditions of pressure and tem-

perature (the development below is for seal B).
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ORIFICE

Pi

QO

÷
ENERGIZING
SECTION

TUBE

A o = ,r (3.6242- 3.4442) =

A G = r (3.4442- 3.3502) =

A i = 7r(3.3502- 3.2502 ) =

A A = 7r(3.2502 3.18752 )

AB = ,r(3.18752 - 3.1252) =

A 1 = ,r(3.1562- 3.1252) =

I A 2 _r(3.5142 3. 1562)
A3 7r(3.6242 - 3.5142)

3.9947

2.0052

2.0724

1.26353

1.2390

•6114

7.4980

2.4655

Energizing Section-

Three orifice assemblies per face (equally-spaced); four orifice plates per

assembly (in series); and well-rounded orifice (size - . 0225" diameter).

Condition #1 (ref. Figure 1) -

Pressurizing gas pressure Pi = 335 psia, T i = 300°F

Sump side pressure Ps = 15 psia, T s = 500°F

Ambient side pressure PA = 315 psia, T A = 1300°F
# = 240 micropoise

QPIT = leakage flow derived from mass flow (taken from a graph in Keenan) =
16.5 scfm/psia/in 2.

For continuity,

Qorifice + Qinner dam = Qtotal = Qouter dam
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where :

Qorifice = o. 85 Pi Aorifice QPIT Kr in scfm

0.85 = orifice coefficient

Aorifice = area of orifice

Kr = f (r) = f (Po/Pi)

*Qinner dam = 2 _r Rmi hn 3
24#L i

(Pi2- PC.2) Tst

Pst T

Tst , Pst= temperature and pressure at standard conditions to convert to

proper units

T = absolute operating temperature

*Qouter dam = 2 7r Rmo ho 3 (PG 2 - PS 2) _ Tst
24pLo Pst T

5.604K r+4.0336x 10 +6ho 3 (Pi 2- PG 2)= 2.4x 10 +6ho 3 (PG 2- PS 2)

Substituting values of h o, PG can be solved.

Ftota 1= F o+F G+F i

where

Fo = K o Ao (PG- Po)

FG= AG (PG - Po)

F i : K iA i{pA- PG)

K i, K o = balancing moduli as discussed under the orifice compensated

hydrostatic seal section

I

I

I

*Ref. : "Fluid Throttling Devices" by Lo Dodge

Q =Try, dm hn 3 AP
12_L (for annular clearance)
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Solving for K o, K i, and Fto t, the results are presented in Table 3.

h o

TABLE 3

LEAKAGE AND RESTORING FORCE RESULTS

x 10-4, in. PG, psia K o K i Ftot, lb.

2 310 0.652 0.5065 1997.3

3 289 0.650 0.512 1874.43

4 275 0.6495 0.516 1798.9

5 271 0.6485 0.5175 1777.1

7 267.5 0.648 0.5185 1756.7

I

I

1
I
1
I

At equilibrium,

Fseat = Ftota 1 = Flift

Flift- Fseat = 0

At openings other than equilibrium,

Frestoring = Flift - Fseat where Fseat = PA AA

Frestoring is plotted on Figure 5.

QFL = face leakage to sump = 2.4 x 10 +6 ho 3 (PG 2 - pS2). Substitute values

of h o and PG calculated for face leakage. Face leakage to sump is then plotted

in Figure 5.

QA = face leakage to ambient = 6.173 x 10 +6 ho 3 (Pi 2 - PA 2). Leakage to am-

bient side controlled by face opening. These results are plotted as a dotted

line in Figure 5.

Results of calculations at other conditions are illustrated by Figures 6 through 8.

Following the same procedure discussed for seal (B), the following curves have

been plotted for seal (A).
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The curves plotted in Figure 9 are in error due to the value of PA being (for
condition 1, e.g.) 300 psia and not 14.7 + 300 = 314.7 psia. However, since

hardware has been designed in reference to these curves, Figures 10 through

13 are submitted for the original geometry and corrected pressures for four
specified conditions.

All subsequent hardware will be corrected for the proper pressure differentials.

Curves showing trends for correct values of PA are shown in Figures 14 through
17.
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|_ _i TO_.PsD_rI_/,'L'4--"' "" ""
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i Figure 5 Seal B: Face Leakage to Sump (Pi = 335 psia.)
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Figure 6 Seal B: Face Leakage to Sump (Pi = 135 psia)
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Figure 7 Seal B: Face Leakage to Sump (Pi = 95 psia)
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Figure 8 Seal B: Face Leakage to Sump (Pi = 235 psia)
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I Figure 9 Seal A: Design Characteristics of Self-Energized Face Seal Curves

i in Error Due to Incorrect PA Value (PA = 300; 100 psia)
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Figure 10 Seal A: Design Characteristics of Self-Energized Face Seal

Seal Design Based on Fig. 9 (PA = 315 psia)
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Seal Design Based on Fig. 9 (PA = 115 psia)
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Figure 12 Seal A: Design Characteristics of Self-Energized Face Seal

Seal Design Based on Fig. 9 (PA 75 psia)
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Seal Design Based on Fig. 9 (PA = 215 psia. )
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Figure 14 Seal A: Design Characteristics of Self-Energized Face Seal

Using Correct Value of PA (PA = 315 psia)
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Figure 15 Seal A: Design Characteristics of Self-Energized Face Sea]

Using Correct Value of PA (PA = 115 psia)
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Figure 16 Seal A: Design Characteristics of Self-Energized Face Seal

Using Correct Value of PA (PA = 75 psia)

PAGE NO. 39



PRATT & WHITNEY AIRCRAFT

200

,_o_' ,oo i

U.

_ o -

-I00

-150

I.iJ
n,'

=E
I.i.I °03
Z

i "'(,.9
,,::I:
v
,¢1:

I "'/

I

I0.0

7.5

5.0

2.5

0

i
I

INLET PRESSURE 215 PSIA
INLET TEMPERATURE 1200
OUTLET PRESSURE 15 PSIA
OUTLET TEMPERATURE 450

/

LEAKAGE

oF -

oF

4 5 9 I0 I

FACE OPENING'-.'hxlO-41N.

Figure 17 Seal A: Design Characteristics of Self-Energized Face Seal

Using Correct Value of PA (PA = 215 psia)
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2.1.3.2 Carbon Face Contact Seal with Bellows Secondary Seal (C)

2.1.3.2.1 Inertial Loadings - Following the procedure given under the orifice

compensated hydrostatic seal, the equivalent face forces are calculated.
/

1. Bellows front, end fitting (steel)

_-0.45---_

3.88

'113115

__il

wt. = .28 r (3.882 - 3. 1152) (.45) = 2. 116 lb.

2. Bellows wafer

0.06-*-
"-TS0.28"_ _'D

TEEL 1

CARBON

,t-O.06

T
3.1
I

wt. of steel = .28 7r (4.12-3.752 ) (.28)

wt. of carbon = .065 7r (3.752-3.12 ) (.40)

total weight of wafer

+ front, end fitting

total weight

= .6893 lb.

= .4000 lb.

= 1o 0893 lb.

= 2.116 lb.

= 3.2053 lb.
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wt./in, of circum =
3. 2053 lb.

2 _ (3.502)
= . 1457 lb/in.

Table of Resulting Inertial Loads:

Cond. - AP, psi Vel., ft/sec. Vel. ratio (Vel. rash} 2 G

I00 200 2/5 4/25 .3646

calc. 332 1.003

200 400 4/5 16/25 1.458

300 500 1 1 2.28

FI, equiv.

face force,

Ib/in.

.0531

.146

.2124

.3321

2.1.3.2.2

Cond. - Ap, psi

Required Total Loadings (Summary) -

Vel., ft/sec.

100 200

200 400

300 500

F I

.146

.2124

.3321

2.1.3.2.3 Face Pressure Forces

Pressure

Force Required Force Required

Cond. - &P, psia lb/in, lb/in.

I00 .146 -.1861 114.7

200 .2124 -.1197 214.7

300 .3321 0 314.7

Pressure

Seat Force (lb/in)

Supp_ Excess

.629 .115 .3011

.646 .06 .1797

• 652 0 0

F300 = (. 652 - . 652) (. 05) (300) = 0

.06 lb/in.F200 = (.652 - . 646) (.05) (200) =

F100 = (.652 - . 629) (.05) (100) = .115 lb/in.

where 0.05 is the amount the seals are

damped; the value is based on

experience and has been checked

out.
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2.1.3.2.4 Collars (Deflection Analysis)

Collar, Oil Holes (Deflection Analysis); usage - contact seals

T

II

x - axis:

•*- 0.358---+

0.179t'_"
A /

X

t
2.60

I

B

0.750
*_'0.375

Member A: (•358) (. 345) (• 179) = . 02215

B: (• 750) (1• 113) (. 733) =. 612

C: (• 500) (. 280) (1.358) =. 190
1. 0987 .82415

• 82415
Cg = = 75)x 1.0987 "

0.500--*

,d.--

0.280

Y - axis

MemberA: .1237x.172=.02125

B: .835 x .557=.465

C: .140 x,140=.0196

1.0987 •50585

Cg)y =
• 50585

1.0987
= . 461

R m=2.60+.461= 3.061
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*--" 0.75"---_

i

Moments of Inertia of -

M 1
ember A: --_ (.

1
B:-_- (]

1
c:TE-(.

F = AP A /2 T '2

= 300/_ [ (3.71,:

MF = 344 (.211") =

F A = (300) (. 358) =

M A= 1107.4) (. 571) =

M R= 72.5- 61.5 = 11.

e = MR2
El

11. (3. 061) 2
= 30x 106x.1353 =

Face Seal Rolls:

61.9 x 10 -6

'*-- 0.571"-_ _0.608"---_

I
I 3.061

I

1
3.713

/2 T 12. 0611

300_ [(3.713) 2- 12.6)2]/

= 72.5 lb-in/in.

107.4 lb/in.

I = . 1353 in 4

6. 122)_ = 344 lb/in, of circ.

(_

• 2544 x 10 .4

-6
@ = 61.9 x 10 (from pagel6:- Orifice Compensated

Hydrostatic Face Seal)

> 25.44x 10 -6 .', O.K.
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2.1.4 Seal-Housing Deflection Analysis (PWA design)

It is desired to be able to determine the deflections of the seal-housing assem-

bly. A detailed analysis has been performed yielding eight equations with eight

unknowns. These equations are solved simultaneously on the IBM 1620 com-

puter. The equations are arrived at by equating the slopes and deflections of

contiguous members to ensure continuity of structure. For example, referring

to the sketch below, the deflection of cylinder (3) at A is equal to the deflection

of cylinder (2) at A, and the slope of (3) is equal to the slope of (2) at A.

J
r_

I
I
l CARBON
I 4
I

L.

I

SEAL 1

3 I

--q_

The following is a detailed description of the analysis. The equations are based

on material given in Roark's "Formulas for Stress and Strain". A free body

diagram of the t)WA seal design is sketched below. Bodies 1, 2, 3 comprise

the carrier; body 4 the seal; body 5 the carbon retention ring; P refers to pres-

sure; M refers to moment; V refers to shear; L refers to horizontal length;

h refers to vertical length; and R refers to radius.
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"_r_'. L 5

f I! _M4Ps

R6 N

I

VI3_-_H LI--_

Mg/II/ P5 I

2F-;o
r} t _"-_,, "1I-

E

Po R

_r L2

r--T_._ B

__°
P2 v2
- P6

'_ C

R2

/c

ttt
PI

L 3 "1

2. i. 4.1 Deflection and Rotation Equations

2.1.4.1. i For Body(1)-

V9 n /H 8AI _,

E Po A

MI

The radial displacement of body (1) at point A (SA1) and the corresponding

angular displacement 01 are given by the following equations -

PoR12 _ V]R12 _ V3(R1 + d)Ri

A 1 E hl ELlh I ELlhl

oi R__ MI- Ms+ i/2 L1Vl-i/2 LIV3 \ RI /EI1

+
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The radial displacements of body (1) with respect to points B, E, and H are

represented below:

B1 = _A1- 1/2 L 101

5E1= 5A1 +1/2 L 101

5Hl= 6A1 +1/2 L 101

where E = modulus of elasticity

(Flange contribution is insignificant to torsional stiffness since St is

scalloped. )

2.1.4.1.2 For Body (2)-

B

8_2

I

I The radial displacement of body (2) with respec to point D ( _ D2) and the cor-

responding angular displacement @2 are given below.

PIRaR2 + VIRIR2 ¥2R2R3

I D2 = Eh 2 Eh2L2 + Eh2L 2

2

The radial displacement of (2) at point ]_, 5 B2 = 5 D2

I The radial displacement of (2) at point C, _ =C2 D2
(Moment due to pressure P2 is assumed negligible)
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2.1.4.1.3 For Body (3) -

,_c3 I c
L_!__/ ,_

M_!__.tt, t

I The radial displacement of body (3) at points _ and the correspondingC(C3)
angular displacement 0 3 are given below -

)
I o_ v_(_::_) _( #_ )
i - Eh33 _ [ 3(1_ v2) _/4

wnere u = 12(___2) ; ^ -_R32h32 ) h
and C3, C4, C 5, C 6 are constants dependent on L 3 and are given in Roark,
p. 297.

2.1.4.1.4 For Body (4)-

The radial displacement of body (4) at point F(_ F4 ) and the corresponding
angular displacement O4 are given below -

Po

I
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PIR5 (R5 - 1/2 h4)

F 4 E lh4

2
R 5

0 4- ElI4 (M3 +P4 a)

PoR5 (R 5 + 1/2 h4)

E lh4
+ R 5 _AT

where

= (a1

ai

II

E
1

AT

2.1.4.1.5

-_)

= coefficient of thermal expansion of carbon

= coefficient of thermal expansion of housing material

= Young's modulus of carbon

= operating temp. - room temp.

For Body (5) -

M4 H A_H5

_P5

8G5

P4_

The radial displacement of body (5) at point G(S G5) and the corresponding angular

displacement O5are given below -

R6(R 6 + b)

G5- EL 5 h 5 V3 (V 3
acts at bolt circle radius)

9 5 ( 0+b ]bP4(' ic)c )
The radial displacement of (5) at point H, 8H5 = $G5
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2.1.4. i. 6 Relations between P2' I)4' and P5

From lateral equilibrium,

I P2 Rs h4 = P4 (R5+ a)P4 (R5 + a) = P5 (R6 + b)

I P2 R5 h4 P2 R5 h4

P4= R_-_ ' P5= R 6+b

2.1.4.1.7 Slopes and Deflections -

_ _lopes and deflections are equ, ;ed to

6B1= 5B2 O1- 92

6 C2 = _ C3 02 =

F4 6A 1 91

6H5= 6H 1 O1= @5

There exist 8 unknowns (t'o, _ 1, M1, r2,

I equations. Consi,quently, the )roblem isS El, 01, which :_epresen; the radial d sp]

The moments of :nertia as'e at )roxima ed

In= 1/12hn, Ln 3whe]'en 1, 2, . .
The simull Lneo,, e( aatio]Ls th .t are s(

ve

follows -

R 2 R 2

SB I = SB 2 : Po i \

I pA_e No 50

I

Slopes and deflections are equated to insure continuity of structure:

There exist 8 unknowns (Po, V1, M1, V2, M2, V3, M3, M4) and 8 simultaneous

Consequently, the problem is solveable. The desired results are

S El, 91, which represent the radial displacement and rotation of point E.

The moments of inertia are approximated for this analysis to be

wheren= 1, 2, ... 5

The simultaneous equations that are solved on the IBM 1620 computer are as

V3

2
R 1 (R 1 + d) R 1 L 1

L I h I 2 I I
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I

I

I
i

I
I

I

I M - M 3 +1/2 V 1L 1 __/__ _,__-:-)-_-_-V)_

R 2 R 4 R 1 R 2 R 2 R 3

= P1 h 2 + V1 h2L2 + V 2h2 L2

2

R 3 C 3 E C5 E R 2 R 4

8C2= 6C;: PI'_-- 3 - V 2Dk3 - M2 _ = P1 h 2

R 2 R 3

+ V 2 L 2 h 2

I
=

I 'F4 6"4'1

2 2

R I R I R I (R I + d)

: P _ - VI_ - V3 = Pl
o h I L1 hl L1 hl

R 1 R 2

+ V1 L 2 h-_

ER 5 (R 5 - 1/2 h4)

E 1 h 4

-p
O

E_5 (R5 + i/2 t14)

E 1 h 4
+ R 5 EBAT

, =6 : V 3
H 5 H 1

+ RI2 L1 I2 I 1

R 6 (R 6 + b)

L5 h 5

2 2

R 1 R 1 R 1 (R 1 + d)

_-_°_-7-- v__-A_- _ _A

M 1 - M3
+ 1/2 V1L 1 - 1/2 V3LI_ _; P5_ R; )

d

+ M 4 R 1

O1 = 02 : "_1 M1 - M3 ÷ 1/2 V1L 1 - Rl+d1/2 V3L I RI - p5 d

('_*_+ ['_*_ Il:{1 ] M4k R; ) = R22
i-_---- (M 2 - M 1 )
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2
R 2 C4 E C 6 E

I @2 = 03: _ (M2- M1)=- V2 2DX 2 - M2 D X

I R 1 + d R 1 + dI @1 = 04: _ M1 M3 + 1/2 V1L 1 1/2 V3L 1 R1 P5 d R1_ _ + M 4

I (Rl+d_l_ E R52 +P4 a)

1 5 " I1 - M3 + 1/2 VIL 1 1/2 V3L 1 --

I

[

I

i

I

l

i

I

]

t

+ /R1+d) R62 I /R6 +

For the Pratt & Whitney Aircraft carbon face contact seal, the analysis by

means of computer solution yielded the following results:

l@ For the press fit (seal pressed into carrier; no pressure applied on seal-*-

Pl = 0):

The algebraic addition of the deflections of body (1} at points E and B yields

the required radial deflection of body (1):

6 + ( - 8 ) = O. 00431 in.
E1 B 1

The desired deflection is at the carbon seal face.

Consequently, the radial deflection of body (i)will be transposed by the

ratio of carbon face width to the length of body (i)-

Deflection on the carbon face = face width (0.00431) = .00262 in.

L 1

2. Relaxing the press fit (applying temperature) -
Thermal relief:

6 = fit - Afit due to thermals (. 00262) = 00219
T fit

Deflectionm the carbon face = . 00262 - . 00219 = - • 00043 in.
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3. Pressurization of the seal (applying a pressure P1 of 300 psi to the seal) -

E1 aB1 .00154in.

Deflection of the carbon face =
face width

L 1
(. 00154) + (- . 00043) = .000505 in.

2.1.5 Thermal Analysis

The TOSS Computer Program from the SHARE General Program Library was

utilized for the thermal analysis of the critical components of the mainshaft

seal rig. The TOSS program employs a method whereby an initial guess for

the temperature distribution is "relaxed" in a cyclic order and a new tempera-

ture distribution is obtained after each cycle or iteration. The seal which was

analyzed is the Pratt & Whitney Aircraft rubbing contact seal. Several cases

were run with the objective of determining the temperature variation of the

carbon seal relative to a variation in the values of the input parameters. Table
4 demonstrates this variation.

TABLE 4

NECK SEAL TEMPERATURE AS AFFECTED

BY INPUT PARAMETERS

Heat Transfer Coefficients Btu/hr ft2F °

Rotating Surfaces

To Air Oil Through Heatloss by

Case No. High Pressure Low Pressure Seal Plate Radiation°F

1 1000. 1.0 865. NONE

2 1000. 1.0 865. NONE

3 I000. i. 0 865. 600. SINK

4 1000. 1.0 865. 300. SINK

5 1.0 1.0 865. 600. SINK

6 1.0 1.0 260. 600. SINK

7 202. 242. 3770. 300. SINK

8 202. 242. 865. 300. SINK

Heat transfer coefficient of oil in bearing race = 260. Btu/hr ft2F

Heat transfer coefficient of stationary surfaces to air =" 1. O Bt__2u

hr ft2F

Btu/Min

Heat Generation Seal

Seal Interface Bearings Temp°F

420. 135. 1640.

210 135 1400.

210. 135. 1385.

NONE NONE 1150.

210. 135. 1240.

210 135. 1665.

210. 67.5 1220.

210. 67.5 1282.
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The thermal map, Figure 18, is the result of inputing the best estimates of the

input parameters at the design conditions. The critical parameter was found

to be the heat generated at the seal-seal plate interface. The heat generation

is a function of the coefficient of friction at the interface, the rpm of the seal-

plate, the seal face loading and the presence of an interface air film. It was

assumed that no air film existed at the interface to remove any heat generation.

The seal temperature was found to vary (dependent on the input heat generation

at the interface) from the oil sump temperature to a temperature greater than

that of the high pressure air. It is intended to determine the heat generation

at the interface by instrumenting the seal with thermocouples. Knowledge of

the seal temperature will then make it possible to determine the heat genera-
tion by use of the analytical model. Reference to cases 1, 2, 3 and 4 listed in

Table 4 illustrates the dependence of the seal temperature on the heat generated
at the interface.

The coefficient of heat transfer of the rotating surfaces was obtained from

Nu = 0.11 (. 5 Re 2" Pr)" 35 (1)

where Re = 60. 7r D 2 (RPM)
/ p (2)

D = diameter of rotation, feet

# = viscosity of air lbs mass
ft hour

P = air density lbs mass

ft 3

Equations 1 and 2 were obtained from Reference 1. At the design rpm of

17,000 and for air at 1300°F and 300 psi, the equations reduce to h = 147 R °4

Btu hr ft2 F ° where R is the radius of revolution, inches. The values of the

coefficient of heat transfer for the rotating surfaces were input into the analytical

model according to this equation for cases 7 and 8 (See Table 4). Case num-

bers 1, 2, 3 and 4 demonstrate the seal temperature variation relative to the

interface heat generation at the seal. Case numbers 5 and 6 demonstrate the

seal temperature dependence on the heat transfer coefficient of the oil in the

plate passage. Cases 7 and 8 demonstrate the reduction in seal temperature

by design of the oil passage so that the heat transfer coefficient (h = 3770) is

in the turbulent regime. Cases 3 and 5 illustrate the effect of the two extreme

values of the heat transfer coefficient on the seal temperature. The extremes

referred to are for very high shaft rotation and for a stationary shaft.

Reference 1: Trans ASME Vol. 77, 1955, p. 1283-1289. G. A. Etemad,

"Free Convection Heat Transfer from a Rotating Horizontal Cylinder with

Interferometer Study of Flow"
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Figure 18 Temperature Map of Carbon Seal For Design Conditions
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Figure 18 is a thermal map of the conditions of case 7, Table 4. Figures 19

and 20 are design graphs for the oil passage in the seal plate. Figure 19 shows

the variation of the frictional pressure drop per unit length of passage with the

mass flow rate of oil coolant. Figure 20 shows the variation of the heat trans-

fer rate with the mass flow rate. Both graphs are derived with passage dia-

meter as parameter (the equations, on which the two graphs are based, were

derived assuming the oil filled the flow passages. ) The dotted lines indicate
the boundaries between the laminar, transition, and turbulent regimes. In the

laminar flow regime, the Sieder and Tate empirical equation was used for

iI
III
ill

ill
IJ_

i O.OIOL

I0.0

l 1 I I11

i i iill
I I I Ill

I II 111
I I Illl

J#rNi

,AM,,gRt 
",_ illll

II111
lllll
I00.0

APVLJ ,--,PSI/INCH

Figure 19 Pressure Drop Per Unit Length (psi/in) as a Function of Oil Flow -

Rate Per Passage (lb/hr) With Passage Diameter as Parameter
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Figure 20 Heat Transfer As a Function of Oil Flow Rate Per Passage With

Passage Diameter as Parameter

The friction factor used to determine pressure drop was given by f = 16/Re.

In the turbulent regime, the Dittus-Boelter equation was used for Reynolds

numbers greater than 10,000.

Nu = 0.023 Re" 8 Pr" 4 (4)

The friction factor employed for turbulent flow was f = 0.046 Re-" 2. The pres-

sure drop was calculated by substitution of the above friction factors into

_P = 4f P
2g (5)

The transition regime on Figures 19 and 20 was denoted by connecting the

laminar and turbulent lines at constant passage diameter.
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Substitution of f = 16/Re into equation (5) and evaluating the physical proper-
ties results in

IAP'h , (D')4 x i08 (6)
n = 0. 1885 _ L'] laminar

where W = lbs oil per hour per passage
n

D' = passage diameter, inches

Ap '

L' = psi pressure drop per inch of passage length

Equation (6) is plotted in Figure 19 for the laminar regime.

Substitution of f = 0. 046 Re-. 2 into equation (5) and again evaluating the physical
properties results in

turbulent (D,)4.8 (7)

Equation (7} is also plotted in Figure 19.

Equation (3) may be rewritten in terms of the parameter _ as follows

L--T-= 1.86 e Pr
# surface] \ L' /

(8)

Evaluation of the physical properties and rearrangement for a one-inch passage

length, yields

L--; = 0.205 Btu/hr F ° inch (9)

Equation (9) is plotted as one line for the laminar regime in, Figure 20.

Repetition of the preceding process for equation (4) yields for the turbulent
regime.

hA 0.00561

L v .8

(D')
. 8 (1o)
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Equation (10) is plotted in Figure 20 for the turbulent regime.

The turbulent and transition regimes are assumed to intersect at Re = 10,000

where W = 1895 D'. Thereforef_A_ _ . 0056_______1(1895 D')" 8

n -\L'/ Turbulent Transition (D') " 8

= 2.36 (II)

The laminar and transition regimes are assumed to intersect at Re = 2100

W
where--= 398 D',

n

h _: '_hAT
eref°re'\L'/Transition Laminar

.33
= 0.205 (39& D') (12)

For specific values of passage dia_e_er, D', the transition regime was drawn
on Figure 20 so that both values of_hA_as indicated by equations (11) and (12)
were satisfied. V'/

To determine where the laminar lines on Figure 19 ended, W_ 398 D' was solved

for each passage diameter, n

The result was the lower dotted line indicated by arrows. Likewise, to deter-

mine where the turbulent lines on Figure 19 began, _W_ = 1895 D' was solved

for each passage diameter. The upper dotted line indicated by arrows was the

result. The transition regime was then indicated by connection of the two
dotted lines.

2.2 TASK II - MAINSHAFT SEAL EVALUATION

2.2.1 Statement of Objective

The work to be accomplished under this task is: (1) the procurement of four seal

assemblies of each of four seal designs after approval by NASA project manager,

(2) the design and procurement of test equipment capable of testing these seals

at the design conditions stated in Task I, and (3) an experimental evaluation pro-

gram, to be carried out on each seal design.

2.2.2 Progress

2.2.2.1 NASA Approval of Seal Designs

To date, NASA has approved three of the four designs submitted:
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1. Face contact seal with piston ring secondary seal. (PWA)

2. Face contact seal with bellows secondary seal (Stein)

3. Orifice compensating hydrostatic face seal with piston ring secondary.
(Stein)

The fourth and final design, consisting of an externally pressurized hydrostatic

face seal (Stein) has been submitted to NASA for concept approval.

Detail drawings of the face contact seal with piston ring secondary were included

in the Semiannual Progress Report No. 1 (PWA-2683). Detail drawings of the

face contact seal with the bellows secondary and the orifice compensating hydro-

static face seal with piston ring secondary are included in Appendix A.

2.2.2.2 Seal Procurement

Procurement of the approved seal designs stands as follows:

1. Face contact with piston ring secondary seal - in-house

2. Face contact with bellows secondary seal - Due July 1966

3. Orifice compensating hydrostatic face seal with piston ring secondary -
in-house

2.2.2.3 Test Stand and Facilities

The seal tests are being run in test stand X-81, which is a completely enclosed

cell with the control panel and instrumentation outside the test area. The rig

is bed-plate mounted and driven by a Ford industrial engine through a truck 4 speed

transmission and a 12 to 1 ratio gearbox. Facilities for heating the oil required

for the test are located in the test cell and the heated test air is piped through

the wall from the adjacent cell where the electrical air heater is located.

A schematic diagram of the test stand and facilities is presented in Figure 21.

An overall view of the interior of the stand is shown in Figure 22 and a close-

up of the rig is shown in Figure 23. Rig instrumentation readout is located out-

side the cell and is shown in Figure 24,the right half of the picture. Rig tem-

peratures are recorded here as are rig and seal vibration. The hydraulic
unloading and seal wear measureroent readouts are also located here. The

stand control panel is shown on the left.

2.2.2.4 Test RigA

Rig design and procurement was carried out with the express intention that all

seals would be compatible with the test rig and would be capable of being tested

without the use of special adapters. In this respect, all seal designs to be tested
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will have the same bolt circle and the same axial length. The rig is capable of

withstanding the maximum temperatures and pressures needed to fulfill the con-
tract requirement.

Each seal assembly of each type seal will be identified by type name and build
number.

2.2.2.4.1 Rig Procurement and Assembly - Parts procurement for the main-

shaft seal test rig (reference Figure 25) is complete and all parts are in-house.

Initial rig assembly was completed during March 1966.

2.2.2.4.2 Rubbing Contact Face Seal with Piston Ring Secondary - Build i -

Assembly of Build 1 was accomplished April 5, 1966, and rig installation in the

test cell was completed April 21, 1966.

The preliminary checkout of Build 1 was terminated due to high air leakage

through the seal (above 50 scfm).

The curve of air leakage vs. seal pressure is shown in Figure 26.

Analysis of the force transducer output of the two torque arms indicated that the

torque pin sleeves were restraining the seal from rotating and that the torque

arms were not transmitting the load to the transducers.

Figures 27 through 36 show the seal rig components prior to Build 1 testing,

Figures 37 through 41 show the seal rig components after 16 hours of preliminary
dynamic checkout.

2.2.2.4.3 Rubbing Contact Face Seal with Piston Ring Secondary - Build 2 -

Assembly of Build 2 was completed on May 25, 1966 and mounting completed

on May 26, 1966. Figure 42 shows the enlarged inlets of the seal plate oil holes

to reduce local sludge buildup.

Preliminary dynamic checkout was completed during June 1966. The curve of

seal leakage vs. seal pressure is shown in Figure 43.

A comparison of Figures 26 and 43 will show a decrease in air leakage from

Build 1 to Build 2. This decrease was brought about by increasing the spring

load from 19 to 30 pounds. At 10,230 rpm, an air leakage of 10 scfm occurred

at a Ap of 42 psi for Build 1 and at 132 psi Ap for Build 2. The increased

spring load also enabled readings of AP up to 250 psi, all readings being within

the stand capability. Further running is required before any pertinent conclu-
sions can be made.

A total of 40 hours have been logged on Build 2.
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2.2.2.5 Test RigB

In an effort to accelerate the testing of the approved seals, Pratt & Whitney

Aircraft initiated the construction of a second test rig. This rig is identical to

the NASA rig in every respect. The major intent of the second rig is to reduce

the time required for the test programs.

Parts procurement for the mainshaft seal test Rig B is complete. Assembly of

this rig is approximately 95 percent complete. This rig will be assembled

with the orifice compensating hydrostatic face seal (Stein). References to photo-

graphs, Figures 44 through 49 will show the seal assembly prior to installation

in the rig. Rig assembly should be complete by July 15, 1966.

2.2.2.6 Inert Gas Test Rig

This rig will be a modification, as shown in Figure 50, of either Rig A or Rig

B and will allow the best seal to be operated in a nitrogen atmosphere as speci-
fied in the contract.

Procurement of parts necessary to convert the mainshaft seal test rig in the

inert gas configuration is continuing with approximately 95 percent of the parts

received. This rig will be assembled after the endurance testing phase of the

program has been completed.

2.2.2° 7 Instrumentation Validation Rig

A current Pratt & Whitney Aircraft seal test rig (see Figure 51) has been modi-

fied to develop the instrumentation techniques necessary to measure the seal-

face-generated torque and seal axial forces.

Procurement of all parts necessary to build this rig is complete. All parts

were available during June 1966. The rig was assembled in June and is now

mounted on a test stand and is being readied to run. Initial testing will commence

during July 1966.

Photographs of this rig prior to complete assembly are shown in Figures 52

through 54.
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Figure 21  Schematic Diagram of Test Facilities X-81 Stand 

Figure 22 Mainshaft Seal Rig 29360 - Overall View of Interior of X-81 Stand 
Showing Test Rig, Gear Box and Drive Engine CN- 5980 
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Figure 23 Mainshaft Seal Rig 29360 - Close-up of Test  Rig and Gear Box As  
Mounted in X-81 Test-Stand C N- 59 82 

b 

Figure 24 Mainshaft Seal Rig 29360 - View of X-81 Stand Control Panel and 
Specialized Instrumentation Required for NASA Contract. 

CN-5981 
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Figure 27 Mainshaft Seal Rig 29360 - Shaft Assembly in  Gisholt Dynetric 
Balance Machine Supports During Balance Operation. 
Note: 1. Speed Indication Band. 2. Balancing Planes. 

Figure 28 Mainshaft Seal Rig 29,360 - Shaft Assembly in Gisholt Dynetric Balance 
Machine Supports During Balance Operation. Note: 1. Belt Drive. 
2. Correction Planes. 3. Photo-Cell Compensator. 4. Speed 
Pickup XP- 62 91 6 
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Figure 29 Mainshaft Seal Rig 29,360 - View of Shaft and Rear Bearing Support 
Assembly. Note: 1. Je t  to  Front Hub Axial Scoop Supplying Roller 
Bearing Under Race and Seal Plate Cooling Oil. 2. Bearing Outer 
Race T/C's. XP- 63612 

Figure 30 Mainshaft Seal Rig 29,360 - Front Hub Assembly P r io r  to Final 
Assembly of Rig. Note: 1. PWA 771 Seal Plate With LCIC 
Hardface. 2. Roller Bearing Inner Race. XP- 63 613 
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t 

Figure 31 Mainshaft Seal Rig 29,360 - Rear  View of Instrumentation Support 
Assembly in Rig Housing. Note: 1. Hydraulic Load Cylinder. 
2. Cylinder T/C Lead, 3. Cylinder Pressure  Tap, 4. Pressurizing 
Tube. 5. Proximity Probe Lead. XP- 63 6 14 

Figure 32 Mainshaft Seal Rig 29,360 - Front View of Outer Case Showing 
Roller Bearing Support. Note: 1. Hydraulic Loading Piston Push 
Rods. XP- 63 6 16 
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Figure 33 Mainshaft Seal Rig 29,360 - Rig Hub Assembly Pr ior  to Installation 
of the Test Seal Assembly. Note: 1. PWA 771 Seal Plate With 
LCIC Hardface. 2. Oil  Cooling Holes. 3. Hydraulic Loading 
Piston Push Rod. 4. Roller Bearing Support. XP- 63733 

Figure 34 Mainshaft Seal Rig 29,360 - P&WA Rubbing Contact Seal With 
Piston Ring Secondary Assembly Shown With Instrumentation 
Installed. Note: 1. Transducers to Measure Generated Torque 
at Seal Interface. 2. Accelerometers. 3. Seal Housing and 
Carbon T/C's. XP- 63 6 15 
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Figure 35 Mainshaft Seal Rig 29,360 - Front View of Rig With the Seal 
Assembly Installed XP- 637 3 1 

. . _. 

Figure 36 Mainshaft Seal Rig 29,360 - Front View of Rig With The Insulation 
Shield Installed Over the Seal Assembly Support. XP- 637 32 
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Figure 37 Mainshaft Seal Rig 29,360 - Rig Hub Assembly After 16.0 Hours 
Running of the Preliminary Dynamic Checkout Program on the 
P&WA Rubbing Contact Seal With Piston Ring Secondary. Note: 
Carbon Wear Path on Seal Plate XP- 64577 

Figure 38 Mainshaft Seal Rig 29,360 - P&WA Rubbing Contact Seal U th P,;-.m 
Ring Secondary After 16. 0 Hours Running of the Preliminary Dynamic 
Checkout Program XP-64578 
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Figure 39 Mainshaft Seal Rig 29,360 - PWA 771 Seal Plate With LCIC Hardface 
After 16.0 Hours Running of the Preliminary Dynamic Checkout 
Program against the P&WA Rubbing Contact Seal With Piston Ring 
Secondary. Note: Carbon Lip Wear Path on the Seal Plate, 

XP- 646 6 6 

Figure 40 Mainshaft Seal Rig 29,360 - Close-up View of Carbon Lip Wear 
Path on the PWA 771 Seal Plate with LCIC Hardface. 

XP- 64668 
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Figure 41 Mainshaft Seal Rig 29,360 - Rear  View of the Oil Cooled Seal Plate 
Showing Oil Scoop With Oil Inlet Holes. Note: Deposits on 0. D. 
of Scoop After 16.0 Hours of Running. XP-64667 

Figure 42 Mainshaft Seal Rig 29360 - Rear  View of the Oil Cooled Seal Plate 
Showing Oil Scoop With the Enlarged Oil Inlet Holes. 

XP-65050 
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Figure 44 Mainshaft Seal Rig 29360 B Build 1. Front Hub Assembly Pr ior  to  
Final Assembly. Note: 1. AMS 6322 Seal Plate With LF-2 Hardface. 
2 Windback Shroud. XP-66911 

. 

Figure 45 Mainshaft Seal Rig 29360 B. Build 1. 
Final Assembly. Note: 1. Solid Collar AAlS 6322 Seal Plate With 
LF-2 Hardface. 2. Windback Shroud. 3. Windback Screw Threads. 
4. Oil Scoop Outlet Holes. 5. Roller Bearing Inner Race. 

Front Hub Assembly P r io r  to 

XP-66912 
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Figure 46 Mainshaft Seal Rig 29360 B. Build 1. Stein Seal Company Orifice 
Compensating Hydrostatic Face Seal With Piston Rig Secondary. 
Note: 1. Carrier.  2. Seal Ring Assembly. 3. Assembly Guard. 

XP-66913 

Figure 47 Mainshaft Seal R i g  29360 B - Build 1. Component Parts of the Stein 
Seal Company Orifice Compensating Hydrostatic Face Seal with Piston 
Rig Secondary. Note: 1. Carrier.  2. 18 Springs. 3. Piston Ring. 
4. 3 Anti-Rotation Lock Pins. 5. Carbon Carr ie r  Band. 6. Carbon 
Seal Ring. 7.  Assembly Guard. XP-66914 
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Figure 48 Mainshaft Seal Rig 29360 B - Build 1. Stein Seal Company Orifice 
Compensating Hydrostatic Carbon Seal Ring Assembly. Note: 
1. Carbon Carr ie r  Band. 2. Carbon Seal Ring. 3. Orifice Vent 
t o  Seal Face. 4. Annulus. XP-66915 

Figure 49 Mainshaft Seal Rig 29360 B - Build 1. Rear  Side of Stein Seal 
Company Orifice Compensating Hydrostatic Carbon Seal Ring 
Assembly. Note: 1. Carbon Carr ie r  Band. 2. Carbon Seal Ring. 
3. Orifice. 4. Hole for Lock Pin. 5. Piston Ring Bore 

XP- 66 9 1 6 
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INSULATION

Figure 50

ORIGINAL DOME

DOME MOVED
TO ACCEPT ADDED
PARTS

.... t ....

BOLT

The Shaded Areas of These Two Layouts Illustrates the Changes

Made to the Rig to Permit Testing of Seals Using an Inert Gas

Blanket on the Oil Sump.
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_J

L
6

I SEAL PLATE
2 ACCELEROMETER

3 SEAL ASSEMBLY
4 PISTON ROD
5 CYLINDER AND PISTON

ASSEMBLY
6 PROXIMITY PICKUP

_

Figure 51 Instrumentation Validation Rig (TL-67996) (Torque Measuring Not

Shown) X-4752
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Figure 52 Instrumentation Validation Rig 29401 - Build 1. Test Seal Assembly 
Installed in Rig Cover. Note: 1. Transducers to Measure Generated 
Torque at Seal Interface. 2. Accelerometers. 3. Seal Housing 
and Carbon T/C's. XP-66908 

Figure 5 3  Instrumentation Validation Rig  29401 Build 1. Close-up of Test  Seal 
XP-66909 Assembly Installed in Rig Cover. 
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Figure 54 Instrumentation Validation Rig 29401 Build 1. Rig Hub Assembly 
P r io r  to  Installation of the Test Seal Assembly. Note: 1. AMS 6322 
Seal Plate With LCIC Hardface. 2. Hydraulic Loading Piston Push 
Rod. XP-66910 
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Figure 55 Film Riding Face Seal Assembly - Orifice Compensated Type With
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